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ABSTRACT

We continue our investigation of overcoming Gibbs phenomenon, i.e., to obtain exponen-

tial accuracy at all points (including at the discontinuities themselves), from the knowledge

of a spectral partial stun of a discontinuous but piecewise analytic fuuction. We show that if

we are given the first N Gegenbauer expansion coefficients, based on the Gegenbauer polyno-

_ 2 _imials Ck(x ) with the weight function (1 -x )" 2 for any constant # >_ 0, of an L_ function

f(x), we can construct an exponentially convergent approximation to the point values of

f(x) in any sub-interval in which the function is analytic. The proof covers the cases of

Chebyshev or Legendre partial sums, which are most common in applications.

I Research supported by AFOSR grant 93-0090, ARO grant DAAL03-91-G-0123, DARPA grant N00014-

91-J-4016, NSF grant DMS-9211820, NASA grant NA(_l-l145, and NASA contract NASl-19480 while the
authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.





1 Introduction

In this paper we continue our investigation of overcoming the Gibbs phenonlenon, i.e., recov-

ering pointwise exponential accuracy at all points including at the discontinuities themselves,

froln tile knowledge of a spectral t)artial sum of. a discontinuous but piecewise analytic func-

tion, which we started in [4], [5], and [6].

Spectral approximations, such as the Fourier approximation based upon trigonometric

polynomials for periodic problems, and the Chebyshev, Legendre or the general Gegenbauer

approximation based upon polynomials for non-periodic problems, are exponentially accurate

for analytic fnnctions [3], [2]. However, for discontinuous but piecewise analytic functions,

the spectral partial sum approximates tile function poorly throughout the doinain. Away

from the discontinuity only first order accuracy is achieved. Near the discontinuity there are

O(1) oscillations which do not decrease with N, the number of terms retained in the spectral

sum. This is known as the Gibbs phenomenon.

Our framework in [4], [5] and [6] to overcome Gibbs phenomenon to obtain exponential

accuracy at all points for piecewise analytic functions relies heavily on using the Gegenbauer

polynomials (,,_(x),_x which are orthogonal in [-1 ,1] with the weight function (1 - x'2)a-½, for

large A. We assume that the first -N _< k < N Fourier coefficients, or the first 0 <_ k <_ N

Legendre coefficients, of a discontinuous but piecewise analytic function, are given. Tile

procedure consists of two steps:

1. Using the given spectral partial sum of to recover the first m _ N Gegenbauer

expansion coefficients, based on a sub-interval [a, b] C [- 1, 1] in which the function

is presumably analytic, with exponential accuracy. This can be achieved for

any L1 function, as long as we choose A in the weight function of Gegenbauer

polynomials to be proportional to N. The error incurred at this stage is called

tile truncation error.

2. For an analytic function in [a, b], proving the exponential convergence of its Gegen-



bauer expansion, when the parameter A in the weight function is proportional to

the number of terms retained ill the expansion. The error at this stage is labeled

the regularization error.

In [6] we demonstrated this procedure in tile case of a discontinuous but piecewise analytic

function, provided its Fourier or Legendre spectral partial sum is given.

Tile proof of the Legendre case in [6] is based upon first expanding the Legendre poly-
1

nomial Pk(x) = C_,(x) into its Fourier series. It was essential in this proof that the Fourier

expansion for the Legendre polynomial PN(X), for large N, contains lower terms that decay

exponentially with N (formula (2.13) in [6]). Unfortunately, it seems that this fact is true

only for Legendre polynomials, probably because timir weight function is special (_= 1). It

seems not true for other Gegenbauer polynomials, such as Chebyshev polynomials. In an

earlier version of [6], we quoted a formula (7.354, page 836 of [7]) to this effect for Chebyshev

polynomials. However, it is doubtful that Formula 7.354 of [7] is correct.

In this paper, we will consider the case of general Gegenbauer spectral methods, with

Chebyshev and Legendre methods as special cases. We assume that f(x) is an Ll function

on [--1, 1] and analytic in a subinterval [a, b] C [-1, 1]. We also assume that the Gegenbauer

partial sum of f(x), based upon the Gegenbauer polynomials C_.(x) with the weight function

(1 - x2)"-½ for any constant # _> 0, over the full interval [-1,1], is known. The objective is

to recover exponentially accurate point values over the subinterval [a, b] of analyticity.

We will follow the same path as in [6]. Basically we will show that the first 0 < k _< N

# X(legenbauer expansion coefficients, based on tile Gegenbauer polynomials C k (') for any

constant # >_ 0, contain enough information, such that a different, rapidly converging
=

Oegenbauer expansion in the subinterval [a, b], with the parameter A in the weight func-

tion (1 - sx2)_-½ being proportional to N, can be constructed. As before, we will separate

the analysis of the error into two parts: truncation error and regularization error. Trunca-

tion error measures the difference between the exact Gegenbauer coefficients with A ,,_ N,

and those obtained by using the spectral partial sum. This will be investigated in Section 3.
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The regularization error measuresthe differencebetweentile Gegenbauerexpansionusing

the first few Gegenbauercoefficientswith A -,_ N, and the function itself in a sub-interval

[a, b], in which the function is assmned analytic. This error is estimated in [6] and we will

simply quote the result in Section 4. The results are sulnmarized in Theorem 4.3, and some

remarks are also given ill Section 4. Section 5 contains two numerical examples to illustrate

our results. Ill Section 2 we collect some useful properties of Gegenbauer polynonfials to be

used later.

Throughout this paper, we will use A to denote a generic constant or at most a polynomial

in the growing parameters, as will be indicated in the text. It may not be the same at different

locations.

2 Preliminaries

In this section we collect some useful results about tile Gegenbauer polynomials,

in later sections. We rely heavily on the standardization in Bateman [1].

Definition 2.1. Tile Gegenbauer polynomial C_(x) is defined by

_,__½_, , _" ._),_+___](1 - x ) _,,_x) = (;(_,,4_--y [(1 -,

to be used

(2.1)

where G(A, n) is given by

C;(_, ,_) =
1)r(n + 2_)(-1)"r(_ + _

2,,n!r(2_)r(,_ + _ + _-)2

(2.2)

[:3

Formula (2.1) is also called the Rodrignes' formula [2, page 175].

an d

Under this definition we have

-*Ac,_(_) - r(,_ + 2_)
_!r(2_)

(2.3)

(2.4)



Tile Gegenbauerpolynomialsare orthogonal under their weight function (1 -z2)x-½:

-x ) G(_)c,,(_),z_ = e_,,,h,, (2.5)
1

where

, r(a+½)
h_ = 7r_C,_(1)F(A)( n + A) (2.6)

We will need to use heavily tile asymptotics of tile Gegenbauer polynondals for large n

and A. For this we need tile well-known Stirling's formula:

1 1 1 I 1

(2_r)_-xX+'e -_: _< F(x + 1) _< ('2_r)_zX+_e-%r_ :r >_ 1 (2.7)

Lemma 2.2. There exists a constant A independent of I and n such that

A½ h I
A-'--C_(1) < "\ --C_(1) (2.8)(,_+ _) _ h,, _<A(,_+ ,_)

The proof follows from (2.6) and the Stirling's formula (2.7).

[]

We also need the following lemma, which is easily obtained from the Rodrigues' formula

(2.1):

Lemma 2.3. For any A > 1 we have:

__ "¢)_d [(1- z2))'-½6,,(z)] = G(A,n) :r2_;__}C.__,_x _ (2.9)c(,x_ i,,, + 1)(l- , ,,,+,,,d:r.

d
The proof follows from taking one derivative _ on both sides of the Rodrigues' formula

(2.1), and then using it again on the right hand side.

Finally, we would need to use the following formula [2, page 176]:

1 d C"
C2(x) = 2(,_ + _,)" d-'; [C,%,(_')- .,__,(x)]

[]

(2.1o)



3 Truncation Error in a Sub-interval

Consider an arbitrary L_ function f(x) defined in [-1,1]. Suppose that the first 0 _< k _< N

Gegenbauer coefficients, based upon the Gegenbaue polynomials ('k(x) with the weight

function (1 - x2) "-½ for any constant/, >_ 0, over the full interval [-1,1], are given:

f"(a,) = h71/_',(1- :d)"-lc';(x)f(x)d., 0 _<k _<N (3.1)

eWe are interested in finding the Gegenbau r expansion of f(x), with _ -'_ N, based on a

sub-interval [a, b] C [-1, 1]. We start by introducing the local variable _:

Definition 3.1. The local variable _ is defined by

• = *(e) = 4 + (3.2)

where

Thus when a _< x _< b,

b-a b+a
e - _ _ (3.3)

2 ' 2

-1<(_1.

[]

We consider functions f(x) satisfying

Assumption 3.2. If"(k)l < A independent of k.

[]

We remark that if f(x) is an L1 function this assumption is fulfilled.

Since we know the first N + 1 Gegenbau r coefficients, ]"(k) for 0 < /*' < N, we define

the Gegenbauer partial sum"
N

f_(x) = _7, f'(k)C_.(x) (3.4)
k=0

Note that f_(x) does not converge fast to f(x) if there exist discontinuities inside the domain.
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The function f(x) has also a Gegenbauer expansion in a sub-interval [a, b], with A ,-_ N.

With (, e and (5 defined in (3.2)-(3.3),we have

CO

f(e( + (5) = _f)(l)C?((), -1 _< ( _< 1 (3.5)
l=O

where the Gegenbauer coefficients f_(l) are defined by

1 f'__ ('2f?(l)-- U (1-)a-½C?(()f(e( + 5)d e (3.6)

Of course, we do not have f_(l) at our disposal, but only an approximation based on tile

Gegenbauer parial sum f_v(x), thus we have

/21 (1 - (2)A-½C?(()/_(e( + (5)d( (3.7)_2(I)= h7 ,

How well do _(I) approximate f_(1)? To answer this question we define

Definition 3.3. The truncation error is defined by

TE(A,m,N,e)= max [E(f?(1)-_(l))C;(()[ (3.8)
-1_<__<1 t=O

where.f?(Oare definedby (3.6)and h_(1)are de_nedby (:}.7).

]

The truncation error is the measure of tile distance between tile true Gegenbauer ex-

pansion in the interval [a, b] and its approximation based on the Gegenbauer partial sum in

[-1, 1].

We first have the following lemma:

Lemma 3.4. Tile truncation error can be estimated by

TE(A,m,N,e) <_ £ ]f"(q)lk

q=N+l 1=0

Proof: From (3.6) and (3.7) we have

])(0- _:(0 = _f_ ''

c?(1) , ]h-_--/_(1- (.2)A-½C_(()Cqu(e( + ,8)d( (3.9)

(1 - (2):_-½Cff(()(f(e( + (5) - f_'v(e( + (5))d( (3.10)



Substituting (3.10) into (3.S), recalling (2.4) and

O0

f(¢_ + 6) - f_(e_ + 6) -
q=N+l

we obtain (3.9).

(3.11)

[]

For simplicity of notations we denote:

Fq_,' -- j__ (1 - _2)A-½CIA(_)Cq_(e_ + 6)d_¢
(3.12)

In order to estimate this term we start with the following

Lemma 3.5. If we denote

#,,_ r?,,

where G(A, l) is defined by (2.2), then we have the following recursive formula:

(3.13)

i_,t = I [I_-l,t+l l_-l,l+al
2(q + #)( L'q-a - "q+l I ,

A >__1, q > I (3.14)

Proof: By the definition of I_" in (3.13)-(3.12), we have

f1 (1 - _2)_'-½C_(_)C_(e_ + 5)d_
,

I I i
= G(A,/) 2(q+ #)_ f (i-_');_-½C?(_),_,,'[C_'+,(e_ +6)-CqU-,(c_ +6)]d_

I a d

= 2G(A,l)(q+ #)(/-,-_ [(I-(2)'-½C_(()1 [Cg_,(e(+5)-Cg+I((( +6)]d(

1 r 2 a-: _-, 6) u
= 2G(A-1,/+ 1)(q+#)cJ- (1-_) 2C,+ 1 (_)[CL1(e_+ -Cq+l((_+6)]d_

1 [i_,-1,1+1 _,-_,I+i]
- 2(q _- #)e [ q-' - lq+,

where we have used (2.10) for the second equality; integration by parts for the third equality

(the boundary terms vanish because of the term (1 - _2)_-_ with A >_ 1); formula (2.9) for

the fourth equality; and the definition (3. I2)-(3.13) for the last equality.

[]
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We cannow obtain tlle following recursiveestimate for I_'t:

Lemma 3.6. The I ;_'l defined by (3.13) satisfies the following estimate:-q

]IqA,, _< V(q + # + 1 - j) i)_j,t+ jdr(q + _ + 1) q-j<_v<_q+jmax ] , j _< min(A,q) (3.15)

Proof: We use induction on j. Tile estimate is clearly valid for j = 0. Assume that it is

valid for j = jo _< min(A, q) - 1, then

I: '_
< P(q+#+ 1 -jo)

- CJor(q+_+ 1)

< F(q+#+l-jo)

- eJop(q + # + 1)

< P(q+_+l-j0)
- eJoI'(q+_ + 1)

max l_-J°'t+J° I
q-jo <p<_ q"}'jo

I 1 iI:=max _o-l,l+jo+l _
q-J0<_p<_q+_02(p 21-_)e -_+1

1
[ 1 X-jo-l,l+jo+l I lA-jo-l,l+J o+1

2(q - jo + #)e q-Jo<_v<_q+jomaXt -v-_ t -]- *p+l ]

r(q+ _ - jo)_ 1/:-'°-1'+'°+'1
< eJ°+ll-'(q + # + 1) q-jo-i<_p<q+jo+l

where we have used (3.14) for the second inequality. All other steps are simple inequalities.

This finishes the induction.

[]

From the previous lemma we can get the following estimate:

Lemma 3.7. For FqA't defined in (3.12) with A _< q we have the following estimate:

[Fq_,'l< A r(q -'_)
- e,_F(q)

where A grows at most as q2.-_.

IG(_X,t)I

1G(o,t + (3.16)

we can take j = A in (3. t5) to arrive at

]laX.f < P(q + # + 1- A) [ip0,t+,_ P(q- A)- ¢_F(q +/t + 1) max [ <q-x<v_<q+.x - e_p(q)
max ]lO,t+_

q-A<_p<_q+A

By the definition (3.12)-(3.13), we have, for q - A < p < q + A,

]ipo,t+.x[ = 1

Proof: For simplicity and without loss of generality we assume A is an integer. Since A _< q,



L (l-e<

p(l + _) lr(p + 2#) 1 f,
<- (I+_)! p!r(2#) I(;(0,1+a)lJ-,

1
< A
- It(0, 1 + _)l

2 1

(1 - ( )-_d_

where for tile second inequality we have used (2.4) and for tile third inequality we have used

1 Invoking, i and A grows at most as q2,-1 if # > 7"(2.:3). Clearly A is a constaut if tt <_

(:3.1:3) again we obtain (:3.16).

[]

Using Stirling's formula we can now easily get:

Lemma 3.8. For I <_ m _< N and q > N, we have

- (2_)_,,,,,, 7 _
(:3.17)

where A again grows at most as (m + A)½q 2"-1.

Proof: Starting from (:3.16) and using the definition (2.2), we obtain:

]F_,_] < A P(q-_) la(_,01
- e_I'(q) [a(0,/+ _)1

' 2_) 2,+_(t+ _)!r(1 + A+ _)< AP(q- )_) F(A + _)F(/+
- _r(q) 2,1!r(2x)r(l + x + 1) r(t + _)

< Ar(q- A) r(x)r(_ + 2A)2 x
- eXr(q) l!F(21)

< AF(q-A) P(X)F(m+2),)2 _
- _r(q) ._!r(2x)

< A (q - A)q-_e-Cq -)') AXe-a(m + 2A)m+2Xe-("'+2;92 :_
- e,Xqqe-q m"e-"' (21)2"x e -2_

< A(m + 2A) ''+2x 1
- (2e,X)_,mm "-q"£

where we have used (2.2) in the second inequality; the monotoificity with respect to l in the

fourth inequality; and the Stirling's formula (2.7) for the fifth inequality.

[]



We are now ready for tile main theorem of this section:

Theorem 3.9. Let the truncation error be defined in (3.8).

with 0 < a,/'3 < 1, then

TE(a_N,/3{N,N,_) < A ((/3 +---2a)f_-------+2_'__N

where A grows at most as N 1+2u. In particular, if c_ =/3 < _, then

TE(c_eN, c_¢N, N, ¢) <_ Aq CN

where

Let ,_ = o_eN and m =/YeN

q= <1

Proof: The theorem follows from (3.9), the Assumption 3.2, (2.8), and (3.17).

(:}.18)

(:3.19)

(3.2o)

[]

4 Regularization Error and the Main Theorem

The second part of tile error, which is called th.e reguiarization error and is caused by using

a finite Gegenbauer expansion based on a sub-interval [a,b] C [-1, 1], to approxiinate a

function f(x) which is assumed analytic in this sub-interval, has been studied in [6]. We will

thus just qhote the result.

We assume that f(x) is an analytic function on [a, b] satisfying

Assumption 4.1. There exists constants p >_ 1 and C(p) such that, for every k >_ 0,

max Idk f k!o<x< dT (x) -< (4.1)

[]

This is a standard assumption for analytic functions, p is the distance from [a, b] to the

nearest singularity of f(x)in the complex plane (see for example [8]). Let us consider the

Gegenbauer partial sum of the first m terms for the function f({{ + 8):

,/1

f;,; (_) = y] f?(l)C?({) (4.2)
/=0

i0



with _, e and (5 defined by (:3.2) and (3.3), and the Gegenbauer coefficients based on [a,b]

defined by

Tile regularization error in tile maximunl norm is defined by:

f(e_ '"= ,nax (4.4)
-1_<_<1 1=0

We have the following result for the estimation of the regularization error, when A ,_ 7_,

[G].

Theorem 4.2. Assume .\ = ^fTn where 7 is a positive constant. If .f(x) is analytic in

[a,b] C [-l, 1] satisfying tile issmnption 4.1, _hen the regularization error defined in (4.4)

can be bounded by

RE(q'Tn, rn, e) <_ Aq TM (4.5)

where q is given by

which is always less than 1.

constant, then

+ (4.G)
q = p21+2.rT._( 1 + 7) l+'r

In particular, if 7 = I and 7n = fieN where fl is a positive

RE(fiN, fiN, e) <_ Aq _N (4.7)

with

q

27e'_ _ (4.8)

[]

We can now combine tile estimates for truncation errors and regularization errors to

obtain the following main theorem of this paper:

Theorem 4.a. (Removal of the Cibbs Phenomenon for the sub-interval case of (legenbauer

partial sum).
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Considera L1 function f(x) on [-1, 1], which is analytic in a sub-interval [a,b] C [-1,1]

and satisfies Assumption 4.1. Assume that the first N + 1 Gegenbauer coefficients

l /_I 2 _-_- -,_f"(k) = h--_k 1(1 - x ) 2Ck(x)f(x)dx ,

for/_ > 0, are known. Let _(1), 0 < l < m be tile Gegenbauer expansion coefficients, defined

in (3.7), based on the sub-interval [a, b], of the Gegenbauer partial sum f_(x)in (3.4). Then

for A = m =/3¢N with fl < _, we have

[ m (_ q¢N3 (4.9)max f(¢_ + 5)-- _-_(l)C[\(_) < A q_N + 1_ ]
-1_<__<1 t=o

where

qT = -- < 1, qn = \32p] < 1

and A grows at most as N 1+2_.

Proof: Just combine the results of Theorems 3.9 and 4.2.

[]

We now give two remarks:

Remark 4.3. Comparing with the Legendre case ill [13],we Call see that the current proof is

less sharp (missing a factor of } in the truncation error qT). The main loss in this sharpness

is in the estimate (3.15).

[]

Remark 4.4. No attempt has been made to optimize the parameters.

[]

5 Numerical Results

In this Section we give two numerical examples to illustrate our result. We will test Chebyshev

series because these are used most often in practice. Notice that the C,hebyshev polynomials

are just Gegenbauer polynomials with/t = 0 nmdule a constant: Tk(x) = _Ck(a).k 0 ,

12



Example 5.1. We take the simple step function

1, i.f a<x<b (5.1)f(x) = O, otherwise

and assume that we know the first N + 1 ('hebyshev coefficients of f(x):

2 ff°(k) - Trek (I - x2)-_Tk(x)f(x)dx, 0 < k < N (5.2)

where

2, ifok= 1, if

' 1We then form the (he)yshev partial sum

k=0 (5.a)
k>l

N

,fg.(x) = _ f°(k)Tk(x) (5.4)
k=O

eand then compute the approximate (,egenbau r expansion coefficient based on the sub-

interval [a, b] defined by (3.7):

(5.5)

With these Cegenbauer coefficients, we can finally compute the uniformly accurate ap-

proximation on [a, b] defined by

7;q,

= }20)(1)ci'(0 (5.6)
1=0

Numerical experiments (for various fimctions) seem to indicate that

m = 0.1_N, ,X = 0.2_N (5.7)

are good choices. Notice that in our proof we did not attempt to optimize these parameters.

For consistency we will use (5.7) for both examples.

For this special function (5.1), there is no regularization error. Hence all we see is

the truncation error. In Fig. 1, left, we show the errors of a middle sub-interval [a,b] =

[-0.5,0.5], and in Fig. 1, right, we show that of a one-sided sub-interval [a, b] = [0, 1]. We

can clearly see good convergence for both cases.
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Fig. 1: Errors in log scale, f(x) defind by (5.1"). [a,b] = [-0.5,0.5] (left) and [a,b] = [0,1]

(right). A = 0.2¢N and m = 0.1¢N. N = 20,40,80,160.

Since there is no regularization error for this example, and the truncation error is smaller

for small rn, we also plot the errors for m = 1 and A = 0.2(N in Fig. 2. We can see

that the errors are now much smaller than those in Fig. 1. Of course for general functions

regularization errors must balance with truncation errors, so we cannot expect m = 1 to

work for the general case.

10"
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101
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N=80
tO m

10m

tO t_

tO _

tO"
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I04
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,oo N=80__.____
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t0" l

10'_1

I0"1 N=160

O0 02 0,4 0.8 08 tO

Fig. 2: Errors in log scale, f(x) defind by (5.1). [a,b] = [-0.5,0.5] (left) and [a,b] = [0, 11

(right).)_ = 0.2_N and rn = 1. N = 20,40,80,160.

Example 5.2. In the second example we take the the following function

sin(cos(x)), if a < x < bf(x) = O, otherwise (5.S)
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Again weassumethat weknow the first N + 1 Chebyshev coefficients of f(x) defined by

This time both truncation error and regularization error exist. We again pick two cases

with middle as well as one-sided sub-intervals. From Fig. :3 we can see similar results as in

the previous example, Fig. 1.
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Fig. 3: Errors in log scale, f(x) defind by (5.8). [a,b] = [-0.5,0.5] (left) and [a,b] = [0,1]

(right)..k = 0.2eN and m = 1. N = 20,40,80,160.

These examples illustrate well the good convergence behavior of our approach.

6 Concluding Remarks

We have proven the exponential convergence in the maximum norm, of a reconstruction

procedure using Gegenbauer series based on C{(x) with large )_, for any Ll function in any

sub-interval [a, b] in which the function is analytic, if we are given the first N expansion

coefficients of this function over the full interval [-1, 1] based on Chebyshev, Legendre, or

any other Gegenbauer polynomial basis. Numerical examples are also given.
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